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ABSTRACT

In many cases, an estimate of effective absolute permeability may be
derived from a pressure-transient well test. This effective permeability does
not resolve local details of the permeability distribution; however, it does
constrain the average permeability in the vicinity of the well. This paper pre-
sents an approach, based on simulated annealing, that integrates well
test-derived effective permeabilities in stochastic reservoir models.

The volume and type of averaging informed by the well test must first be
calibrated by forward simulating the well test on stochastic reservoir models
that are consistent with the geological interpretation, core, well log, and seis-
mic data. Stochastic reservoir models are then constructed with simulated
annealing to additionally honor the well test-derived average permeabilities.

We present an example that illustrates how the methodology is imple-
mented in practice. The improvement in the stochastic reservoir models is
demonstrated by more accurate and precise prediction of future reservoir

performance.
INTRODUCTION more reliable when the numerical geological models
honor more information. Applying a flow simulator to
The concept underlying stochastic reservoir model- multiple numerical models allows an appreciation for
ing is to construct numerical models of the reservoir the uncertainty in the reservoir response. A maximum
properties that are consistent with all relevant data. amount of relevant prior information, e.g., core mea-
History matching is easier and forward predictions are surements, log data, geophysical data, geological inter-

131



132 Deutsch and Journel

pretations, and well test data, must be integrated to
ensure realistic output from the simulator. This chapter
is concerned with integrating effective permeabilities
derived from pressure-transient well tests into stochas-
tic models of absolute permeability.

Conventional conditional simulation techniques
such as Gaussian (Matheron et al., 1987; Deutsch and
Journel, 1992), fractal (Hewett, 1986), or indicator
(Journel and Alabert, 1990) models have the ability to
account for local conditioning data (core and well log
data), a global histogram, and varying amounts of
spatial information in the form of variogram models.
Variants of these techniques based on cokriging
(Doyen et al., 1988) or some type of trend model
(Marechal, 1984) allow geophysical information to be
integrated into the resulting realizations. None of
these techniques, however, allow the integration of
well test-derived effective permeabilities.

Simulation techniques based on marked point
processes (Haldorsen and Damsleth, 1990) are well
suited to simulating spatial phenomena characterized
by a repetition of easily depicted shapes. The result-
ing spatial structure is implicitly controlled by the
placement of the digitized or analytically defined
objects. Conditioning to local data and a global his-
togram is achieved by disallowing inconsistencies at
data locations and controlling the number of objects
placed in the realization. The integration of geophysi-
cal interpretations and well test-derived effective per-
meabilities is difficult with these latter techniques.

A well test-derived effective permeability does not
directly resolve the smaller scale permeability values
near the well bore; however, it does account for a
complex nonlinear average of the small-scale values.
Flow simulation results are directly influenced by the
average flow characteristics as indicated by well
test-derived effective permeabilities. Historically,
well test-derived permeabilities were used in homo-
geneous reservoir models for reservoir performance
forecasting (Ramey, 1990). Two inadequacies of such
homogeneous and deterministic models are that they
do not allow one to assess uncertainty and they do
not allow for the important influence of small-scale
permeability heterogeneities. Stochastic reservoir
models allow the small-scale permeability hetero-
geneities to be accounted for; however, as mentioned,
current stochastic modeling techniques do not
account for the information carried by average prop-
erties measured by well tests.

Another possible method to account for well
test-derived permeabilities is to rescale the core or
well log—derived permeability values such that the
permeability / thickness product of the core data is the
same as the well test result. This method may be
appropriate when the well test is measuring a differ-
ent component of the permeability, such as fractures.
We do not address this issue in this chapter. The as-
sumption made here is that the core and well log data
are representative and their spatial distribution may
be altered to reproduce the well test result.

The problem of conditioning stochastic models to
well test-derived effective permeability is difficult

because the average is nonlinear. Conventional simu-
lation techniques allow data of different volumetric
supports only when the averaging is linear (Journel
and Huijbregts, 1978).

One way to achieve this conditioning would be to
discard all models that do not yield a forward-simu-
lated well test response close enough to the actual
measured pressure response. Such selection proce-
dures may be practical when building models with a
single well test; it is not practical, however, in the
presence of multiple well test interpretations, some
based on more advanced multirate tests, that give a
number of different permeability averages near the
well. In general, a prohibitively large number of real-
izations would be required to find a few that simulta-
neously match all well test data.

The algorithm proposed in this paper generates
realizations with simulated annealing (Kirkpatrick et
al., 1983) that honor the measured well test effective
permeabilities in addition to conventional data, such
as the local log-derived permeability values data, a
histogram, and a variogram. The application of simu-
lated annealing requires that the generation of a sto-
chastic realization be posed as an optimization
problem. The two-part objective function in this opti-
mization problem consists of the deviation from the
model variogram plus the deviation from the well
test effective permeabilities. The deviation from the
measured well test results could be known through
forward simulation of the well test on all candidate
realizations. Again, it would be impractical to for-
ward simulate the well test after each perturbation as
demanded by simulated annealing; therefore, the for-
ward simulation must be replaced by a more easily
calculated numerical approximation. A nonlinear
power average (Korvin, 1981; Deutsch, 1987; Alabert,
1989) of the small-scale permeability values has been
adopted for this purpose.

More precisely, the well test is first interpreted to
provide the effective permeability-thickness product
near the well bore. The effective permeability is com-
puted knowing the reservoir thickness. Then, the type
of averaging, as quantified by an averaging power,
and the volume of averaging must be calibrated. The
averaging power depends essentially on the connec-
tivity of the extreme permeability values. The volume
of averaging depends on the duration of the well test.
Finally, the initial stochastic realizations are altered
by systematically changing the elementary grid block
permeability values so that the previously calculated
effective permeability and the variogram model are
honored. The effective permeability can be calculated
very fast after each perturbation using the previously
calibrated power average.

The following algorithm will clarify the imple-
mentation details and acknowledge a number of
limitations. One limitation is that the method im-
poses the well test results without accounting for
uncertainty in the underlying well test interpreta-
tion. A second limitation is that the method requires
that the full well test response be summarized by a
single nonlinear weighted power average. The
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severity of these limitations may be judged through
numerical experimentation.

QUANTIFYING WELL TEST-DERIVED
EFFECTIVE PERMEABILITY

Pressure transient well tests are performed by gen-
erating a flow rate impulse in the reservoir and mea-
suring the pressure response. Well test interpretation
consists of interpreting the pressure response by
using an appropriate mathematical model to relate
the pressure response (output) to flow rate history
(input) (Horne, 1990). Provided that the mathematical
model is appropriate, the model parameters can be
associated to certain reservoir parameters. Of particu-
lar interest is the effective absolute permeability k,.

To apply the envisaged optimization technique it is
necessary to translate this well test-derived k, into a
more easily calculated property while retaining the
flexibility to differentiate a wide variety of heteroge-
neous systems encountered in practice. The power
averaging formalism is used to model the nonlinear
averaging of absolute permeabilities (equation 1). The
assumption is that the elementary permeability values
average linearly after a nonlinear power transforma-
tion, that is

1

I?(m) = {%ug\f(l‘i)‘u}a 1)

where k(w) is the w-power average permeability of
the N permeability values k(u,), 1 = 1,...,N, at locations
u; within the volume of interest V. The power ®
ranges between the bounding values of -1 and 1 cor-
responding to the harmonic and arithmetic averages,
respectively (the geometric average is obtained for @
= 0.0). The idea is to use relation (1) and to calibrate
the averaging volume V and averaging power ® for
each particular well test.

To define the appropriate averaging volume it is
necessary to consider the portion of the pressure
response used to derive the well test effective perme-
ability k,. In practice, k, is obtained by interpreting the
pressure response during the time at which the
response resembles infinite-acting radial flow. Early
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time effects, such as well-bore storage, and late time
boundary effects are not considered in the interpreta-
tion. It is possible to define an inner radius 7, and an
outer radius r, _that correspond to the time limits of
the interpretation because the pressure response, at
any time {, may be related to block permeabilities
within a time-dependent radius of drainage r(f).
Consider a typical pressure response shown on the
Miller-Dyes-Hutchinson (MDH) plot in Figure 1. The
pressure response between 1 and 10 hr is used to
derive an estimate of the effective permeability k...,
The inner and outer limits of the shaded region (on
the schematic illustration of the reservoir) correspond
to the radius of drainage at 1 and 10 hr, respectively.
Actually, these limits will not be circular due to local
heterogeneities. The impact of this assumption will be
revealed in the experimental calibration described in
a following section.

The time interval during which the pressure
response resembles infinite-acting radial flow is easily
determined by standard interpretation techniques.
Evaluating the radius of drainage r(t) at the time limits
is not as straightforward; depending on the arbitrary
definition chosen for r(t), the radius can change by as
much as a factor of 4. It will be necessary to calibrate
the radius of drainage r(t) by repeated flow simula-
tions. The block permeabilities contributing to the pres-
sure response measured up to time f are approximately
enclosed by a circular volume centered at the well and
defined by a time-dependent radius 7(f) written as (van
Poollen, 1964; Johnson, 1988; Alabert, 1989)

2
\! ouc,

where A is a constant, k, is the reservoir permeability
around the well, ¢ is the porosity, u is the fluid viscos-
ity, and ¢, is the total compressibility. Depending on
the definition chosen for the radius of drainage, the
value of A ranges from 0.023 to 0.07 (for oil field
units). Alabert (1989), in evaluating the averaging vol-
ume of a well test and for specified levels of dis-
cretization and test durations, found an optimal A‘,Pr
value of 0.010 in oil field units.

The averaging power @ describes the type of averag-
ing within the volume. In many cases, this averaging
power is close to the geometric average (@ = 0). For

r(t)=A )

Plan View of the Reservoir

Figure 1. A schematic illus-
tration of the volume mea-
sured by a given well test
interpretation. The inner
and outer limits of the shad-
ed region, on the plan view
of the reservoir, correspond
to the radius-of-drainage at 1
and 10 hr, respectively (the
limits of infinite acting radi-
al flow).
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practical test durations and for complex heterogeneous
permeability distributions, the type of averaging can
differ significantly from the geometric average.

There are no reliable universal values for the con-
stant A and the averaging power ; they must be cali-
brated using the following procedure (see also
Alabert, 1989; Deutsch, 1992).

1. Generate n_ (20-100) multiple realizations of the
permeability field with relevant statistical prop-
erties.

2. Forward simulate a well test, with conditions as
close as possible to those used in the field to
arrive at k, on each realization to obtain n,_ pres-
sure response curves.

3. Deduce an effective permeability k, i = 1,...,n_
from each pressure curve using established wel
test interpretation techniques (Horne, 1990).

4. Compute average permeabilities k(A,®), i =
1,...,n, for A values between the practical bound-
ing limits of 0.001 and 0.020 and for @ values
between practical bounding limits of -0.5 and
0.5.

5. Choose the pair (A,,,®,,) that yields the closest
agreement between the reference k, i=1, .. .n,
values and the approximate k(A,,,®,,), i =
L,...,n, values.

After establishing appropriate A4, and @, , values
the validity of the power average approximation can
be checked by creating a scatterplot of the k (A @);
values versus the well test-derived k, values.

In summary, the weighted nonlinear power average
(equation 1) is proposed as a computationally simple
replacement for the full well test response. In practice,
a well test response is interpreted to yield an estimate
of the effective permeability k, and the averaging vol-
ume parameter A and power @, , are calibrated for
the particular geological setting. "The next step is to
impose the well test-derived effective permeability k,
i.e,, the appropriate waverage k (4,,,®,,), on stochastic

models. We use the technique of sithulated annealing,

SIMULATED ANNEALING

The “annealing” approach to stochastic simula-
tion has no explicit random function model, rather
the creation of a simulated realization is formulated
as an optimization problem. The first requirement of
this class of methods is an objective (or energy) func-
tion, which is some measure of difference between
the desired spatial characteristics and those of a can-
didate realization. The essential feature of annealing
methods is to iteratively perturb (relax) the candi-
date realization and then accept or reject the pertur-
bation with some decision rule. The decision rule is
based on how much the perturbation has brought
the candidate image closer to having the desired
properties. One possible decision rule is based on an
analogy with the metallurgical process of annealing,
hence the name simulated annealing. Technically the

name “simulated annealing” applies only to those
stochastic relaxation methods based strictly on simu-
lated annealing (Aarts and Korts, 1989; Kirkpatrick
et al., 1983); however, through common usage the
name “annealing” is used to describe the entire fami-
ly of methods that are based on the principle of sto-
chastic relaxation.

Annealing is the process where a metallic alloy is
heated so that molecules may move positions relative
to one another and reorder themselves into a low-
energy crystal (or grain) structure. The probability
that any two molecules will move relative to one
another is known to follow the Boltzmann probability
distribution. Simulated annealing is the application of
the annealing mechanism of perturbation (swap the
attribute values assigned to two different grid node
locations) with the Boltzmann probability distribution
for accepting perturbations.

At first glance this approach appears terribly ineffi-
cient. For example, millions of perturbations may be
required to arrive at an image that has the desired
spatial structure. However, these methods are more
efficient than they might seem as long as few arith-
metic operations are used to update the objective
function after a perturbation; virtually all convention-
al global spatial statistics (e.g., a variogram) may be
updated locally rather than globally recalculated after
a local perturbation. Also, the power average repre-
sentation of the well test k, developed earlier is easily
updated.

The objective function is defined as some measure
of difference between a set of reference properties and
the corresponding properties of a candidate realiza-
tion. The reference properties could consist of any
quantified geological, statistical, or engineering prop-
erty. In the context of this paper, the reference proper-
ties consist of traditional variogram functions and the
well test—derived effective permeability. Thus, the
objective function could be written as

Hy, . . 2
) ’11 % Z[ynf(hl )_ "Yn ”(hi )]
i=1
1 p 3)
+ Ay x Y[k — ki |
j=1

where O is the objective function, n, is the number of
variogram lags, h, considered important, y*/(h,) is the
reference variogram value for lag h, y**(h) is the var-
iogram value taken from the candidate realization, n,
is the number of well test-derived effective permeabil-
ities to be reproduced, ki is the /" well test-derived
effective permeability, k" is the j™ effective perme-
ability calculated from the candidate realization using
power average, and A, and 4, are relative weights to
ensure that the variogram contribution has the same
importance as the well test contribution.

The starting image is a three-dimensional array,
z(u), i = 1,...,N, of permeability values. The annealing
methodology to achieve a realization I, z"(u,), i =
1,...,N, with a low objective function (see equation 3)
is as follows.
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. Generate an easily constructed initial realiza-

tion: the initial realization is either the output
of a more conventional stochastic simulation
algorithm or the initial realization could be
generated by assigning each nodal value at
random from the stationary univariate distri-
bution F(z).

. Establish the reference components in the objec-

tive function: the reference variogram values
y“/(h), i = 1,...,n, are based on experimental
data or on an analytical model. The reference
effective permeabilities k' j = 1,...,n,, are the
direct result of applying standard interpretation
techniques to the pressure transient responses
measured in the field.

. Compute the realization components in the

objective function: the variogram values y"/(h,),
i=1,....n,, and the effective permeabilities k'%j =
1,...,ny, are calculated from the candidate real-
ization.

. Compute the objective function O based on the

reference and the realization statistics (see equa-
tion 3).

. Perturb the realization to generate a new realiza-

tion by swapping the permeability values at any
two locations.

. Update each component in the objective function

and recompute the objective function O, with
the perturbation. The change to the objective

function is AO = O O,

new

. The perturbation is accepted or rejected on the

basis of a specified decision rule. One approach
would be to accept all helpful perturbations AO
<0.0 and to reject all disruptive perturbations
AO >0.0. This choice, which corresponds to a
steepest descent approach, can lead to a local
minimum. The essential contribution of simulat-
ed annealing is a prescription for when to
accept or reject a given perturbation. The accep-
tance probability distribution is given by

I ifAO<0.0
Placcept} = ()
-A0
e, otherwise
All favorable perturbations (AO <0.0) are accept-
ed and some unfavorable perturbations are
accepted with an exponential probability distri-
bution. The parameter ¢ of the exponential distri-
bution is analogous to the “temperature” in
annealing. The higher the temperature, the more
likely an unfavorable perturbation will be
accepted. Accepting the perturbation causes the
image z(u), i = 1,...,N and the objective function
O to be updated.

. When the objective function O gets close to zero

then the realization is considered finished
because it now honors both the reference vari-
ogram and the well test data; otherwise, return
to step 5 and continue the perturbation process.

The idea is to start with an initially high tempera-
ture parameter f and lower it by some multiplicative
factor A (say 0.1) when enough perturbations have
been accepted (K, ., = 10 times the number N of grid
nodes in the system) or too many have been tried
(K.« = 100 x N). The algorithm is stopped when
efforts to lower the objective function become suffi-
ciently discouraging (Press et al., 1986).

One remaining issue is to establish the weights 4,
and 4, applied to each component in the objective
function. The purpose behind these weights is to have
each component play an equally important role in the
global objective function. Without any weighting, the
component with the largest units would dominate the
objective function. The weights 4, and 4, are estab-
lished so that, on average, each component contributes
equally to a change in the objective function AO. That
is, each weight 4_is inversely proportional to the aver-
age change of that component objective function:

b

Im C=1,...,2 (5)

In practice, the average change of each component 10|
cannot be computed analytically; however, it can be
numerically approximated by evaluating the average
change of M (say 1000) independent perturbations:

Tol 1 & ()
‘AOJ:HZ!O[ -—O(.I, et .2 6)

m=1

where [30.| is the average change for component ¢, om
is the perturbed objective value, and O, is the initial
objective value. Each of the M perturbations m = 1,...,.M
arises from the swapping mechanism employed for the
annealing simulation.

All of the elements needed for integrating well test
data are now in place. The resulting realizations
obtained after going through the simulated annealing
procedure with the objective function (see equation 3)
are conditional to both the initial geological/statistical
description and the well test-derived permeabilities.
The following example illustrates how the methodol-
ogy is implemented in practice.

AN EXAMPLE APPLICATION

Consider an example where the block horizontal
absolute permeabilities are known to follow a distribu-
tion F(z), which results from the sum of a constant 2.5
md and a lognormal component with a mean of 10.0
md and a variance of 225 md?. This two-part distribu-
tion reflects the simplifying assumption of represent-
ing a three-dimensional permeability distribution by a
two-dimensional areal model. The two-dimensional
spatial distribution of permeability is characterized by
a spherical normal scores variogram model y,(h) with a
range of 25 grid block units. A 101 x 101 unit realiza-
tion of this lognormal permeability field was generated
to serve as a reference distribution (Figure 2). A core
(or well log-derived) permeability and a drawdown
well test—derived permeability are known at the five
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Reference Distribution

84.11 md
49.05 md
28.67 md
16.82 md
9.95 md
5.95 md
3.62 md

2.27 md

1.48 md

1.03 md

0.77 md

Figure 2. The reference distribution of permeability considered as the true
reservoir for the purposes of obtaining the well test responses and interpret-
ed effective permeabilities. The conditioning data, falling on a five-spot pat-

tern, are highlighted by the black dots.

well locations (see Table 1). The five drawdown pres-
sure response curves are shown on Figure 3.

Simulated annealing was used to generate 100 real-
izations conditional to the distribution model F(z), the
variogram model y,(h), and the five core data; the fol-
lowing objective function was considered:

0= Z] [ ()~ 7™ (b,)]

where n, corresponds to the most compact arrange-
ment of 200 lags (Figure 4). Annealing allows this
objective function to be reduced close to zero, i.e., the
resulting realizations provide an excellent reproduc-
tion of the variogram. The first four realizations are
shown on Figure 5.

These 100 initial realizations reproduce the core
permeability at the five well locations. The well test
values, however, are not reproduced. Figure 6 shows
five histograms of the well test-derived permeability
values obtained from the 100 simulated realizations.
The vertical line in each histogram is the result of the
reference case. Ideally, the realizations would be con-
ditional to the reference well test values.

To check the validity of the numerical well test sim-
ulation, the five well tests were simulated using uni-
form permeability fields. The results for all five wells
with three different uniform permeability fields (5.0,
10.0, and 50.0 md) are shown on Figure 7. The time

limits for infinite acting radial flow are shown by the
vertical lines. The well test-derived effective perme-
abilities are shown on Table 2. The well test-derived
values appear consistently lower than the input perme-
ability field; all of the wells show the same bias. This
bias was not considered significant for permeabilities
of less than 50 md. Additional validation runs would
be warranted if well test-derived permeability values
were observed outside of this range.

These 100 effective permeability values, derived
from forward simulating the well test on 100 uncondi-
tional realizations, were used to calibrate the parame-

Table 1. Core- and well test—derived effective
absolute permeability from five wells in the study
area

Core Well Test
Permeability Permeability
Well (md) (md)
1 (top left*) 7.25 14.16
2 (top right) 10.95 9.63
3 (center) 8.89 941
4 (bottom left) 5.04 5.59
5 (bottom right) 4.03 4.54

*Position in parentheses refers to well positions shown in Figure 2.
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Figure 3. The pressure response for the five wells is

shown on this Miller-Dyes-Hutchinson (MDH) plot.
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Figure 4. A polar plot of the 200 lag vectors that
enter the objective function of the annealing simu-
lation.

Table 2. Well test-derived effective absolute perme-
abilities from uniform permeability fields*

Uniform Permeability Fields (md)

Well 5.00 10.00 50.00
1 (top left**) 496 9.99 48.75
2 (top right) 4.96 9.99 48.77
3 (center) 4.96 10.00 48.80
4 (bottom left) 4.96 9.98 48.73
5 (bottom right) 4.96 9.99 48.75
Difference (%) 0.1 0.1 2.5

“Simulated values appear slightly lower than those of the uniform permeabil-
ity field.
**Position in parentheses refers to well positions shown in Figure 2.

ters A, and @, , that provide the best numerical
approximation to the well test result. The average per-
meabilities k (A,@), i = 1,...,n_for A values between the
practical bounding limits of 0.001 and 0.020 and for @
values between practical bounding limits of 0.5 and 0.5
were computed using the 100 initial realizations. The
criteria for an optimal pair (A, @, ) was to simultane-
ously maximize the correlation and minimize the bias
between the power average approximation (equation 1)
and the true well test values. The optimal pair A, =
0.003 and @, = 0.0 was found to both maximize the
correlation and minimize the bias.

Figure 8 shows a scatterplot of the power average
numerical approximation and the true well test-
derived effective permeability. Note the lack of any
bias (the average effective permeabilities are 9.3 md in
both cases) and the excellent correlation of 0.83. The
physical volume informed by the well test can be
determined by the constant A, and knowledge of the
time limits of the infinite acting portion of the pres-
sure response: 7, . = 1.0 grid units (70.1 f) and r,, =
4.6 grid units (320.0 ft).

The annealing simulation now uses a two-part objec-
tive function (equation 3). Annealing is able to generate
realizations that lower this objective function to zero.
The first four realizations are shown on Figure 9.

To verify that the calibrated power average is a fair
approximation of the actual well test result, a full well
test was forward simulated on the final 100 realizations.
The distributions of effective permeabilities, after pro-
cessing, is extremely close to the reference values.

This illustrates that well test effective permeabilities
can be imposed on stochastic realizations to a fair
degree of approximation. What has not been shown yet
is that accounting for well test—derived effective per-
meability actually helps predict future reservoir perfor-
mance. To illustrate the improvement in future
prediction, all 201 realizations (the reference, the 100
initial, and the 100 well test-conditioned realizations)
have been associated to the five-spot injection/produc-
tion pattern shown on Figure 2 with an injector at all
corner locations and a central producer. All variables
except the block absolute permeabilities have been
held constant and the performance of each realization
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Realization One Realization Two
'y st $ .

Realization Four

Figure 5. Four realizations conditional to the five data (represented by the black dots), the global histogram,
and the global variogram.

has been simulated with ECLIPSE (Exploration well test data are shown on Figure 10. Note that the
Consultants Limited, 1984). well test—conditioned distributions show less uncertain-
Three response variables are presented here: (1) the ty as measured by the 90% probability interval.

time to reach 90% water cut, (2) the time of first water
arrival at the producer, and (3) the time to reach 50%

water cut (the units are important only in a relative REMARKS AND CONCLUSIONS
sense). The reference image yielded response variables
of 86.8, 8.93, and 20.8, respectively. The histograms of Our methodology integrates well test-derived

values obtained before and after conditioning to the properties into stochastic reservoir models. The
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Figure 6. The well test-derived effective absolute
permeabilities for each of the five wells. One hun-
dred realizations were generated and five well test
simulations were performed on each realization to
obtain these histograms.

methodology consists of generating realizations
with simulated annealing. The objective is to mini-
mize deviations from the initial variogram model
and yet honor a numerical approximation of the
well test-derived effective permeability. The power
average numerical approximation is useful because
it would not be feasible to rerun a flow simulation
after each perturbation called for by the annealing
technique.

An example shows how the methodology could be
implemented in practice. The results are encouraging
even though the example may not fully reflect the het-
erogeneity encountered in practice.

The annealing methodology presented to integrate
well test data is quite general. The method has the
potential to integrate many disparate data, as long as
these data can be quantified to enter a global objec-
tive function. For example, multiple-point statistics
could be used to input complex curvilinear geologi-
cal structures and seismic data could be incorporated
by adding another component to the global objective
function (Deutsch, 1992; Doyen et al., 1989). Other
sources of data that could be incorporated are the
results of multiple-rate and tracer tests.
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Figure 7. The well test response for three different
uniform permeability cases. The response and inter-
preted results are shown for all five wells in the
five-spot pattern.
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Figure 8. The well test-derived effective permeabili-
ty versus the power average approximation for the
500 (5 wells x 100 realizations) well tests.
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Reafizaﬂo On

Realization Three

Realization Two

Figure 9. Four realizations conditional to the five data (represented by the black dots), the global histogram,
the global variogram, and the five well test-conditioned results.
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